Continuous Wavelet Transforms from Semidirect Products: Cyclic Representations and Plancherel Measure
نویسندگان
چکیده
منابع مشابه
Continuous wavelet transforms from semidirect products: Cyclic representations and Plancherel measure
Continuous wavelet transforms arising from the quasiregular representation of a semidirect product group G = R ⋊ H have been studied by various authors. Recently the attention has shifted from the irreducible case to include more general dilation groups H , for instance cyclic (more generally: discrete) or one-parameter groups. These groups do not give rise to irreducible square-integrable repr...
متن کاملSpectra of Semidirect Products of Cyclic Groups
The spectrum of a graph is the set of eigenvalues of its adjacency matrix. A group, together with a multiset of elements of the group, gives a Cayley graph, and a semidirect product provides a method of producing new groups. This paper compares the spectra of cyclic groups to those of their semidirect products, when the products exist. It was found that many of the interesting identities that r...
متن کاملContinuous and Discrete Wavelet Transforms
Rob A. Zuidwijk CWI E-mail: [email protected] Url: http://www.cwi.nl/cwi/projects/wavelets.html November 6, 1997 Abstract In this lecture, the continuous wavelet transform will be discussed and some attention will be given to the discrete wavelet transform. Finally, wavelet transforms on multidimensional data will be considered. The set-up of the lecture is as follows: 1. The continuous wavelet t...
متن کاملContinuous and Discrete Wavelet Transforms
This paper is an expository survey of results on integral representations and discrete sum expansions of functions in L(R) in terms of coherent states. Two types of coherent states are considered: Weyl–Heisenberg coherent states, which arise from translations and modulations of a single function, and affine coherent states, called “wavelets,” which arise as translations and dilations of a singl...
متن کاملWavelet and frame transforms originated from continuous and discrete splines
New classes of diadic and triadic biorthogonal wavelets and wavelet-type frames in signal space are presented. The construction employs interpolatory filters with rational transfer functions that originate from continuous and discrete splines. These filters have linear phase. They are amenable either to fast cascading or parallel recursive implementation. The wavelets are applied to compression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2002
ISSN: 1069-5869,1531-5851
DOI: 10.1007/s00041-002-0018-1